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In  this paper we look at  the problem of an undular bore entering still water. The 
effect of the boundary-layer at  the channel bottom is considered. The motion is 
assumed to be laminar and inviscid, apart from the thin boundary layer, where 
the normal boundary-layer approximations are used to find the velocity com- 
ponents. The effect on the main flow then appears in the equations of motion 
as a shear stress. 

1. Introduction 
The classical theory of the bore (Rayleigh 1914) is based on a transition between 

two uniform flows through which mass and momentum flux is conserved. 
Although no loss of momentum due to the frictional forces a t  the bottom is 
considered, the solution shows that energy must be lost at  the bore; and it was 
suggested that this is due to frictional dissipation or turbulence. If the velocity 
and depth upstream are u1 and h,, and those downstream are u2 and h,, then 
Rayleigh showed that the loss of energy per unit span per unit time was 

where Q = u1 h, = u2 h,. (2) 

For a strong bore it is generally accepted that this energy loss occurs by 
breaking and turbulence just downstream of the bore. But it is found experi- 
meritally that weak bores have a stationary train of waves behind them and 
exhibit no tendency to break (Favre 1935). Lemoine (1948), quoting these 
results, suggests that, in these circumstances, the required energy loss may occur 
by radiation through the wave train. Lemoine assumed that the waves are 
sinusoidal, and calculated their amplitude and resulting rate of radiation of 
energy through them. 

However, his results were only in moderate agreement with experiment. This 
led Benjamin & Lighthill (1954) to doubt that the wave train is sinusoidal. They 
decided to follow the suggestion of Keulegan & Patterson (1940), who had 
shown that the observed waves in Favre’s experiments could be taken as 
sinusoidal waves to a very good approximation. The investigation of Benjamin & 
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Lighthill (1954) showed that it was possible to  match a steady train of waves 
downstream to a uniform upstream flow only if there was a change in either Q,  
the volume flow rate, R the energy, or S the momentum flow rate. 

For cases where Q and S remain constant they related the resulting wave 
train behind the bore to the amount by which R was reduced a t  the bore, varying 
from waves of very large wavelength, for very little loss of energy, to waves of 
very small wavelength, when the loss of energy was that given by the classical 
theory. 

I n  1965 Favre's results were again analyzed, this time by Sturtevant, who, 
using the results of the theory of Benjamin & Lighthill, calculated the values 
of Q,  R and S for particular flows. I n  comparing the values of R and S a t  the bore 
with their values upstream, he found that both actually increased at the bore. 
He went on to show that, in the experiments conducted by Favre, the increase 
was always several times larger than the decrease predicted by the classical 
bore conditions. He pointed out, however, that this result, while contrary to 
the accepted model of the bore (where there is some decrease in S), is not as 
surprising as i t  would a t  first appear. It is in fact consistent with the idea that 
changes in momentum and energy are due to the action of viscosity near the 
channel bottom. With co-ordinates fixed in the bore the channel bottom moves 
faster than the main stream velocity and therefore has the effect of adding 
momentum and kinetic energy. 

I n  this paper we will look a t  the effects of laminar viscosity on a bore entering 
still water, to  try to  account for the dissipation that Benjamin & Lighthill have 
shown must occur, in order to  obtain a continuous solution for the undular bore. 

2. The basic equations 
The basic equations for the mean velocity u and the height h are obtained by 

the usual procedure of integrating the x-momentum equation across the cross- 
section of the channel. The additional term due to wall friction appea,rs as a body 
force in the averaged momentum equations. This method is not new, and is 
essentially that of Chester (1968) so i t  will not be repeated in detail here. 

The co-ordinate axes are taken so that the x-axis is horizontal and the bottom 
is y = 0. This is shown in figure 1. 

Euler equations are then, in the usual notation, 
For the moment, wall friction will be neglected. 

au av 
ax ay 

au au au l a p  x+u-+v- = ax ay p a x )  

-+- = 0 

The continuity equation and 

(3) 

(4) 

These are to be solved with a boundary condition at  the free surface, 
ah ah 
-+u- = v. 
at ax 
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We now integrate (4) from zero to h to obtain 

where 

1. a p  
pax' 

(u-u)Zdy = 

L = 'J "L ay. 
h o  

(7 )  

The term ( u - u ) ~ ,  appearing on the right-hand side, can be neglected on a 
cnoidal theory, since it is of order Uia4, where U, is a typical velocity scale 
(say d(gh)) and a is a typical amplitude of the free-surface disturbance (see 
Byatt-Smith 197 1 ). 

Y 

FIGURE 1. The co-ordinate axes. 

Also, with the aid of (4), (6) becomes 

ah a 
at ax 
- +- (uh) = 0. (9) 

The pressure term is evaluated on the basis that the dispersion effect is small 
and can be accounted for on a two-dimensional linear theory, with dissipation 
neglected. Again the method follows that of Chester (1968) to obtain the familiar 
result 

lap  - ah a3h 
g&+ght-+O ax3 

P ax 

where ha is the upstream height. Again on a cnoidal theory, we take only the 
first two terms. 

We conclude '$2 with a discussion of the dissipation due to viscous action in 
the boundary layer on the channel bottom. We assume that the effect of the 
boundary layer is to add a body force which will appear as a shear stress at the 
wall. To obtain $his we first require the solution of the boundary-layer equations, 
and for the present purposes it is sufficient to calculate only the most significant 
terms of the solution. For small disturbances the additional terms can be derived 
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from the linearized boundary-layer equations. Again we follow Chester (1968), 
who gives a fuller argument. Thus we have to solve 

where u,b is the velocity perturbation in the boundary layer. This gives as solutions 

Finally, we require the effect of the boundary layer on the main flow. Prom (12) 
we can obtain the shear stress as 

This shear stress will appear on the left-hand side of (7) and the basic equations 
become 

3. The effect of viscosity at the channel bottoms 
The effect of viscosity is twofold. First, one might expect it to provide some 

dissipation to account for the loss of energy that is unexplained in the classical 
theory of the bore. Secondly, one would expect it to have a damping effect on 
the amplitude of the waves that are found according to an inviscid theory. While 
these two effects are not uncoupled, the time scales involved are different. For 
example, an undular bore entering still water develops into a near steady state 
fairly rapidly, while the amplitude of the leading waves a t  the head of the bore 
is damped out very slowly as the waves advance. 

We are not really interested in the slow decay of amplitude, so we shall assume 
that the leading waves are, in fact, steady. Of course, this solution will not be 
valid a t  large distances behind the bore, where the boundary layer will not be 
small. However, i t  is reasonable to hope that the method of solution will give a 
fairly good description of the leading waves. 

Thus, we look for a steady solution where u and h are functions of the single 

(16) 
variable 

where U is the velocity of the bore. Then (14) can be integrated to give 

(17) 

5 = x+ Ut,  

(U+U)h = Q = Uh,,, 

and we can eliminate u from (14) and (17) to get 
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To non-dimensionalize, we put 

E = h,X, 5 = h,/U and h = h,(1+7). 

Then ( 1  8) becomes 

where 

In  obtaining this equation from ( 1 8 )  we have made the assumptions that F 2  
can be set equal to 1 (except in the term ( F z  - 1)  7')) and that terms of order q3 
can be neglected. This is consistent with the cnoidal theory that we have been 
using. Also, on the left-hand side we have taken the linear approximation in the 
integrand. Finally, we can integrate once to obtain 

The constant of integration vanishes, since --f 0 as X -+ - CQ. 

4. Discussion of the results and conclusions 
Equation (21)  is an ordinary integral differential equation; it can be integrated 

by the following method. The behaviour of 7 at - co is found by looking for a 
solution of the form 7 = A ea x, and neglecting the terms of order A2. We can 
then integrate (21) by a step-by-step method, using the previous values of 7 to 
evaluate the integral. These results are shown in figure 2. When the height of 
the first trough is plotted against the Froude number, the results, for constant 
Reynolds number, follow the experimental results of Favre (1935) and Sandover 
& Zienkiewicz (1957) very well. (See figure 3.) It should be noted, however, that, 
although the Reynolds number of the experiments of Sandover & Zienkiewicz 
was higher than that corresponding t o  the experiments of Favre, the effects of 
viscosity were larger. This is because the channel used by Sandover & Zien- 
kiewicz was much narrower than that used by Favre, so the effects of the side 
walls were much more important. Thus, we would expect the theory to  be more 
applicable to the experiments of Favre. However, the theoretical value of the 
Reynolds number that gives best agreement with Favre's experiments is higher 
than the actual Reynolds number of the flow. This result is slightly surprising, 
since it suggests that viscosity is more than able to produce enough dissipation 
to provide for the loss of energy not accounted for by the classical theory of the 
bore. I n  fact, for F = 1.25 (a strong bore where the amplitude of the leading wave 
is about 0.5))  our theory still gives ample dissipation, provided no breaking 
occurs to render the theory invalid. Thus it is possible that in a strong bore 
breaking is not necessary to produce dissipation, but occurs purely because the 
wave amplitude becomes too large. 

It is also of interest to compare the energy and momentum of the wave train 
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behind the bore with the upstream values. To non-dimensionalize we divide the 
energy by gh, and the momentum by gh;. The upstream values are then given by 

ru = iF2+ 1, su = P++. 

1 2 3 

Horizontal distanco 
1 

FIGURE 2. A graph showing the effect of viscosity on the solution of the undular bore. 

First 
trough 

r-r,  0.00031 

r-r,  0.0013 
S- -s ,  0.00033 

S-8 ,  0'0014 
r - r ,  0.00059 
S-S, 0'00075 
r - r u  0.0024 
S-8 ,  0.0028 

Second 
peak 

0.00042 
0.00046 
0.0016 
0.0017 
0.00080 
0.00 104 
0.0031 
0.0038 

~ ~~ ~~ ~ 

Second Third Reynolds Froude 
trough peak number number 

0.00055 O.OOO6l) lo-' 
0.0018 0.0021 
0.0020 0.0023) 
0.00105 Ot.00122 
0.00134 0.00168} 

0.0049 0.0056 
0.0038 

1.05 

1.05 

10-6 1.15 

1.15 

0.00050 0.00058 

TABLE 1 

The effective charge, r - ru and s - su, is then given in table I .  These values are 
calculated by assuming that the definitions given by Benjamin & Lighthill hold 
locally over awavelength; that is, we assume that each wave can be approximated 
by a cnoidal wave. As we have indicated in $1, both r and s increase at the bore. 
However, we notice that the increase continues in the wave train downstream of 
the bore. This is a consequence of the fact that our dissipation occurs con- 
tinuously and does not change abruptly a t  the bore. 
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It must be remembered, however, that, for obvious theoretical reasons, we 
have chosen to study a steady profile. Thus we have assumed that no dissipation 
goes into the damping of the amplitude of the leading waves. From the point of 
view of comparison, this unsteadiness will not be too important, because large 
time intervals are required to produce observable changes in profile (Keulegan 

1.1 1.2 

Froude number 

1.3 

FIGURE 3. A graph showing the effect of viscosity on the height of the first trough. - - , 
theory: (i) R = 3 x lo4, (ii) lo5, (iii) lo5. 0, Fame (3 x lo5); 0, Sandover & Zienkiewicz 
(9 x 10"). 

1948). The present analysis does, however, produce a solution which agrees very 
well with what is observed, and perhaps brings out the mechanism by which this 
is achieved. 

The work presented was carried out partly at the University of Bristol 
Mathematics Department. The author is grateful to  Professor W. Chester for 
his comments and helpful suggestions. He also acknowledges with thanks 
financial support from the S.R.C. 
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